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SUMMARY

We present an improvement to the method of 3D gravity gra-
dient inversion by planting anomalous densities. This method
estimates a density-contrast distribution defined on a grid of
right-rectangular prisms. Instead of solving large equation sys-
tems, the method uses a systematic search algorithm to grow
the solution, one prism at a time, around user-specified prisms
called “seeds”. These seeds have known density contrasts and
the solution is constrained to be concentrated around the seeds
as well as have their density contrasts. Thus, prior geologic
and geophysical information are incorporated into the inverse
problem through the seeds. However, this leads to a strong
dependence of the solution on the correct location, density
contrast, and number of seeds used. Our improvement to this
method consists of using the “shape-of-anomaly” data-misfit
function in conjunction with the `2-norm data-misfit func-
tion. The shape-of-anomaly function measures the different
in shape between the observed and predicted data and is insen-
sitive to differences in amplitude. Tests on synthetic and real
data show that the improved method not only has an increased
robustness with respect to the number of seeds and their loca-
tions, but also provides a better fit of the observed data.

INTRODUCTION

Methods for the 3D inversion of potential field data can be
divided into two main categories: those that estimate the val-
ues of physical properties and those that estimate the form of
the sources, given their physical property values. Examples
from the category that estimates physical property values in-
clude Bear (1995), Li and Oldenburg (1998), and Portniaguine
and Zhdanov (1999). The category that estimates the form of
the sources can be subdivided into non-linear and linear meth-
ods. Non-linear methods generally parametrize the form of
the sources using prisms with polygonal cross-section (e.g.,
Murthy and Swamy, 1996; Oliveira Jr et al., 2011) or polyhe-
dra (e.g., Wildman and Gazonas, 2009). On the other hand, lin-
ear methods parametrize the subsurface using right rectangular
prisms (e.g., Camacho et al., 2000; Krahenbuhl and Li, 2006;
Silva Dias et al., 2009, 2011; Uieda and Barbosa, 2011). The
method of Uieda and Barbosa (2011) implements a systematic
search algorithm to iteratively “grow” the solution around use-
specified prisms called “seeds”. This method is based on the
2D approach of René (1986) and uses the regularizing function
of Silva Dias et al. (2009) to impose compactness on the so-
lution. The method is computationally efficient due to the im-
plementation of a “lazy evaluation” of the sensitivity matrix.
However, it is highly dependent on the number of seeds and
the correct choice of their locations and density contrasts. We
present an improvement to the method of Uieda and Barbosa
(2011) which uses the “shape-of-anomaly” data-misfit func-
tion of René (1986) together with the traditional `2-norm data-

misfit function. Tests on synthetic and real data show the im-
proved robustness of our method with respect to the location
and number of seeds.

METHODOLOGY

Let us assume that there are Nc types of observations avail-
able (e.g., the gravitational attraction and/or some combina-
tion of the components of the gravity gradient tensor). Now,
let gk, k = 1, . . . ,Nc, be a vector with L observations of one of
these types of data. We assume that gk is caused by an anoma-
lous density distribution in the subsurface. We discretize the
subsurface into an interpretative model consisting of M juxta-
posed right rectangular prisms with homogeneous densities. It
follows that gk can be approximated by the sum of the contri-
bution of each prism. In matrix notation, this relation is given
by

dk = Ak p, (1)

where dk, k = 1, . . . ,Nc, is the L-dimensional predicted data
vector, p is the M-dimensional parameter vector whose jth el-
ement is the density of the jth prism, and Ak, k = 1, . . . ,Nc,
is the L×M sensitivity matrix. The elements of the sensitiv-
ity matrix can be calculated using the formula of Nagy et al.
(2000).

The misfit between gk and dk can be expressed through the
normalized `2-norm data-misfit function
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Another measure of this misfit is the “shape-of-anomaly” func-
tion of René (1986)

ψ
k(p) =

√√√√ L∑
i=1

(
α kgk

i −d k
i
)2
, (3)

where α k, k = 1, . . . ,Nc, is a scale factor. The shape-of-
anomaly function, as its name suggests, measures only the dif-
ference in shape between the observed and predicted data. If
the two data have the same shape, they will differ only by a
factor of α k. Thus, the optimum value for α k is the one that
minimizes ψ k (equation 3) (René, 1986). For a given predicted
data vector dk (equation 1), the value of α k is calculated by
differentiating ψ k with respect to α k and equating the result
to zero, i.e.,
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Hence, before evaluating function ψ k (equation 3), α k can be
calculated by (René, 1986)
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We can then define the total data-misfit function as the sum of
the individual data-misfit functions (equation 2) of each type
of data available, i.e.,

Φ(p) =
Nc∑

k=1

φ
k(p), (6)

and, likewise, total shape-of-anomaly function as

Ψ(p) =
Nc∑

k=1

ψ
k(p). (7)

From now on, we follow the methodology of Uieda and Bar-
bosa (2011), in which the solution is iteratively built by the
accretion of prisms to user-specified “seeds”. These seeds are
prisms of the interpretative model with given density contrasts.
Before the iterative growth process starts, all elements of the
parameter vector p are set to zero. Next, the elements of p
corresponding to the seeds are assigned the density contrasts
of the respective seeds (Figure 1a). The growth process is then
started. An iteration of the growth process consists of attempt-
ing to grow, one at a time, each of the Ns seeds (Figure 1b). A
seed grows by attempting to perform the accretion of one of its
neighboring prisms (i.e., prisms that share a face). We define
the accretion of a prism as changing its density contrast from
zero to the density contrast of the respective seed undergoing
the accretion. In order to be chosen for accretion, a neighbor-
ing prism must satisfy two criteria:

1. The accretion of a prism must decrease the total data-
misfit function Φ(p) (equation 6) and satisfy the con-
dition

|Φ(new)−Φ(old)|
Φ(old)

≥ δ , (8)

where Φ(new) is the value of Φ(p) evaluated with the
prism included in the estimate, Φ(old) is the previous
value of Φ(p), and δ is a small positive constant that
controls how much the solution is allowed to grow.

2. The accretion of a prism must produce the smallest
value of the goal function Γ(p) out of all other prisms

that satisfy the first criterion. Unlike Uieda and Bar-
bosa (2011), we define the goal function as

Γ(p) = Ψ(p)+µθ(p), (9)

where Ψ(p) is the total shape-of-anomaly function
(equation 7), µ is a regularizing parameter, and θ(p)
is a modified version of the regularizing function of
Uieda and Barbosa (2011)

θ(p) =
1
f

M∑
j=1

p j

p j + ε
l j, (10)

where p j , j = 1, . . . ,M, is the jth element of param-
eter vector p, ε is a small positive constant, l j is the
distance between the jth prism and the seed which per-
formed its accretion, and f is a scaling factor equal to
the mean extent of the interpretative model (the region
in the subsurface to be interpreted). In practice, ε is not
needed because one could simply sum l j or zero when
evaluating the regularizing function.

If none of the neighboring prisms of a seed satisfy these crite-
ria, the seed does not grow during this iteration. The growth
process continues while at least one seed is able to grow (Fig-
ure 1c). Uieda and Barbosa (2012) provide an animation of a
growth process performed on synthetic data using the method
of Uieda and Barbosa (2011).

We emphasize that the full sensitivity matrices Ak are not
needed at any single time during the inversion process. There-
fore, the “lazy evaluation” of the sensitivity matrices proposed
in Uieda and Barbosa (2011) is still possible in our modified
algorithm, making the inversion fast and memory efficient.

For clarity, the modified planting algorithm proposed here will
be henceforth referred to as the shape-of-anomaly planting al-
gorithm.

APPLICATION TO SYNTHETIC DATA

We tested the advantages of the shape-of-anomaly planting al-
gorithm over the method of Uieda and Barbosa (2011) on syn-
thetic noise-corrupted data of the gzz component of the grav-
ity gradient tensor (Figure 2a-b). The synthetic data are pro-
duced by an elongated prismatic body with density contrast of
1.0 g/cm3 (black frame in Figure 2c-d). The data set contains
400 observations on a regular grid at 150 meter height and
were contaminated with pseudorandom Gaussian noise with
zero mean and 2 Eötvös standard deviation. We applied both
methods on this data set using an interpretative model consist-
ing of 50,000 prisms. To yield adequate results, the method of
Uieda and Barbosa (2011) would need several seeds correctly
located along the strike of the source. However, here we used
only one seed (white dot in Figure 2a-b) in both inversions.
The depth of seed was 700 meters (center of the simulated
body) for the method of Uieda and Barbosa (2011) and 300
meters (top of the simulated body) for the shape-of-anomaly
planting algorithm. These values were the ones that yielded
the best results for both methods. We used inversion control
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Figure 1: 2D sketch of three stages of the planting algorithm.
In the upper panels, the black dots represent the observed data
and the red line represents the predicted data produced by
the current estimate. In the lower panels, the light gray grid
of prisms represents the interpretative model, the color-filed
prisms represent the current estimate, and the colored outlines
represent the neighboring prisms of the current estimate. (a)
Initial state with the user-specified seeds included in the esti-
mate with their corresponding density contrasts and all other
parameters set to zero. (b) End of the first growth iteration
where two accretions took place, one for each seed. The neigh-
boring prisms of each seed and the predicted data are updated.
(c) Final estimate at the end of the algorithm. Modified from
Uieda and Barbosa (2011).

variables µ = 105 for Uieda and Barbosa (2011), µ = 0.2 for
shape-of-anomaly, and δ = 0.0005 for both methods.

Figure 2c-d shows the estimated density-contrast distributions
obtained using each method. As expected, the method of
Uieda and Barbosa (2011) is not able to recover the correct
geometry of the true source given only one seed. Moreover,
the estimated density-contrast distribution (Figure 2c) is not
entirely compact and the predicted data presents a reasonable
fit to the synthetic data (Figure 2a). Conversely, the shape-of-
anomaly planting algorithm estimates a density-contrast dis-
tribution (Figure 2d) that not only approximately recovers the
geometry of the true source, but is fully compact and produces
a better fit of the data.

APPLICATION TO REAL DATA

Quadrilátero Ferrı́fero

We applied the shape-of-anomaly planting algorithm to the
gravity gradient data from the Quadrilátero Ferrı́fero, Brazil.
We used the data of the gyz and gzz components in the inversion
(Figure 3a) and assumed a density contrast of 1.0 g/cm3 be-
tween the iron ore and the host rocks (Carlos et al., 2011; Uieda
and Barbosa, 2011). The data set contains a total of 9164
measurements. The interpretative model consists of 310,500
prisms which follow the topography of the area. We used five
seeds (white dots in Figure 3a) in the inversion, in contrast with
the 46 seeds used by Uieda and Barbosa (2011). The inversion
control variables were µ = 0.1 and δ = 0.0001. Figure 3b
shows the estimated 3D density-contrast distribution. This es-
timate confirms that the geologic bodies are thin, compact, and
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Figure 2: Application to synthetic data. (a-b) Synthetic noise-
corrupted (colored contours) and predicted (black contour
lines) gzz components. White dots show the horizontal location
of the seeds. (c-d) Perspective views of the estimated density-
contrast distributions. a and c were produced by the method
of Uieda and Barbosa (2011) and b and d by the shape-of-
anomaly planting algorithm. Red prisms have density contrast
of 1.0 g/cm3. Prisms with density contrast of 0 g/cm3 are not
shown. The black prismatic frame in c and d is the outline of
the true source.

elongated on the southwest-northeast direction. These results
are in close agreement with previous interpretations by Mar-
tinez et al. (2010), Carlos et al. (2011) and Uieda and Barbosa
(2011). The current estimate is, however, more compact than
previous estimates, particularly in the southern parts. Figure
3a shows the fit between the observed and predicted data. No-
tice that the inversion fits the elongated southwest-northeast
feature associated with the iron ore deposits.

Redenção granite

The Redenção granite is located in the Amazon Craton, north-
ern Brazil. The residual Bouguer anomaly and the outline of
the outcropping portion of the granite (red line) are shown in
Figure 4a. We applied the shape-of-anomaly planting algo-
rithm to the gridded gravity data set composed of 400 observa-
tions. The interpretative model consists of 215,040 juxtaposed
prisms with approximate dimensions of 992×1163×166 me-
ters. Only one seed was used in the inversion (white dot
in Figure 4a) at a depth of 3 km with density contrast of
−0.09 g/cm3 (Oliveira et al., 2008). We used inversion control
variables µ = 0.5 and δ = 5× 10−5. The estimated density-
contrast distribution (Figure 4b-c) is compact and has an out-
cropping portion that is in agreement with the available geo-
logic information (red line). The estimated granite has a sheet-
like shape and thickness of approximately 6 km, which agrees
with previous interpretations by Silva Dias et al. (2007) and
Oliveira et al. (2008).
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CONCLUSIONS

We have presented an improvement to the method of 3D in-
version by planting anomalous densities. This method uses
an iterative algorithm that builds the solution to the inverse
problem through the accretion of prisms around user speci-
fied “seeds”. Our improvement consists of modifying the goal
function by exchanging the `2-norm data-misfit function by
the “shape-of-anomaly” data-misfit function. The shape-of-
anomaly function measures the difference in shape between
the observed and predicted data, disregarding differences in
amplitude. This exchange results in an improved fit of the ob-
served data and increases the robustness of the method with re-
spect to the number of seeds and correct choice of their depths.
These improvements lead to a better delineation of elongated
sources when providing a single seed. Tests on synthetic data
and real gravity and gravity gradient data show the improved
performance of our method in recovering compact geologic
bodies.
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Figure 3: Application to gravity gradient tensor data from the
Quadrilátero Ferrı́fero, Brazil. (a) Observed (colored contours)
and predicted (black contour lines) gyz and gzz components of
the gravity gradient tensor. White dots show the horizontal lo-
cations of the five seeds used in the inversion. (b) Perspective
view of the estimated density-contrast distribution. Red prisms
have density contrast of 1.0 g/cm3. Prisms with density con-
trast of 0 g/cm3 are not shown.
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Figure 4: Application to the Bourguer anomaly data of the
Redenção granite, Brazil. (a) Observed (colored contours) and
predicted (black contour lines) data. The white dot shows the
horizontal location of the single seed used in the inversion.
(b-c) Perspective views of the estimated density-contrast dis-
tribution. Blue prisms have density contrast of −0.09 g/cm3.
Prisms with density contrast of 0 g/cm3 are not shown. The
red line in a-c represents the true outcropping portion of the
pluton.
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