
Estimating the nature and the horizontal and vertical positions
of 3D magnetic sources using Euler deconvolution

Felipe F. Melo1, Valeria C. F. Barbosa1, Leonardo Uieda1, Vanderlei C. Oliveira Jr.1,
and João B. C. Silva2

ABSTRACT

We have developed a new method that drastically reduces the
number of the source location estimates in Euler deconvolution
to only one per anomaly. Our method employs the analytical
estimators of the base level and of the horizontal and vertical
source positions in Euler deconvolution as a function of the
x- and y-coordinates of the observations. By assuming any ten-
tative structural index (defining the geometry of the sources),
our method automatically locates plateaus, on the maps of
the horizontal coordinate estimates, indicating consistent esti-
mates that are very close to the true corresponding coordinates.
These plateaus are located in the neighborhood of the highest
values of the anomaly and show a contrasting behavior with
those estimates that form inclined planes at the anomaly bor-
ders. The plateaus are automatically located on the maps of
the horizontal coordinate estimates by fitting a first-degree

polynomial to these estimates in a moving-window scheme
spanning all estimates. The positions where the angular coef-
ficient estimates are closest to zero identify the plateaus of the
horizontal coordinate estimates. The sample means of these
horizontal coordinate estimates are the best horizontal location
estimates. After mapping each plateau, our method takes as the
best structural index the one that yields the minimum correla-
tion between the total-field anomaly and the estimated base
level over each plateau. By using the estimated structural index
for each plateau, our approach extracts the vertical coordinate
estimates over the corresponding plateau. The sample means of
these estimates are the best depth location estimates in our
method. When applied to synthetic data, our method yielded
good results if the bodies produce weak- and mid-interfering
anomalies. A test on real data over intrusions in the Goiás
Alkaline Province, Brazil, retrieved sphere-like sources sug-
gesting 3D bodies.

INTRODUCTION

In the middle of the last century, many governmental agencies
opened a new era in the acquisition of a huge amount of aeromag-
netic data, which in turn propelled the development of automatic
aeromagnetic interpretation methods such as Euler deconvolution.
Historically, Thompson (1982) proposed an Euler-based profile
depth estimation method called “EULDPH” and Reid et al.
(1990) implemented the grid extension suggested by Thompson
and coined the term “Euler deconvolution.” After the Reid et al.
(1990) extension, Euler deconvolution has gained enormous popu-
larity as a semiautomated method to estimate the 3D position of
magnetic sources. This popularity is because Euler deconvolution

is a fast-processing method that requires no prior knowledge about
the anomalous source magnetization, but just its homogeneity in
intensity and direction (Barbosa and Silva, 2011).
In Euler deconvolution, a small moving data-window operator is

applied in a piecewise way over the whole gridded data set. Using
the observations inside the small data window and assuming the
geometry of the source, Euler deconvolution estimates the horizon-
tal and vertical source positions by solving a small linear system of
equations. This moving data window scheme permits fast interpre-
tations of massive data sets in the presence of interfering signals
produced by multiple sources. This moving-data window scheme
is one of the reasons why Euler deconvolution became a useful tool
in estimating the locations of multiple geologic bodies. However,
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this scheme leads to a large number of Euler solutions (Barbosa and
Silva, 2011). This scenario is further complicated when the geom-
etry of the source is unknown and when multiple sources with dif-
ferent geometries are present. In these cases, the geometry of the
source (related to the structural index) is tentatively assumed by
the interpreter and the Euler deconvolution is applied to whole data
set. Thus, for each assumed structural index, Euler deconvolution
produces a map of source-position estimates. This procedure leads
to a set of maps, each one displaying a broad cloud of Euler sol-
utions, rendering nontrivial the interpretation of the locations
of multiple geologic bodies. According to Barbosa and Silva
(2011), the large number of estimated solutions by Euler deconvo-
lution still remains an operational disadvantage of this method.
To overcome this difficulty, some methods have been developed

to select the best Euler solutions and to reduce the number of ac-
cepted Euler solutions. Thompson (1982) accepts those Euler sol-
utions displaying small dispersions in depth estimates. Fairhead
et al. (1994) accept just the Euler solutions derived from moving
data windows located about the maximum of the horizontal
gradient of the reduced-to-the-pole anomaly. Mikhailov et al.
(2003) reduce the number of acceptable Euler solutions by using
a clustering technique based on artificial intelligence. Li (2003) se-
lects a single anomaly and applies the Euler deconvolution to this
selected anomaly by using a single data window. FitzGerald et al.
(2004) present a comprehensive review of practical techniques that
are usually used to distinguish reliable from spurious Euler solu-
tions. Jekeli (2009) shows that the ad hoc criterion often used to
accept Euler solutions (Reid et al., 1990) yields better results than
the probabilistically founded test (using the Student and Fisher dis-
tributions for random variables) that determines whether an estimate
of a parameter is reasonably consistent. Jekeli (2009) proposes a
criterion for Euler solution acceptance based on the coefficient
of the depth estimates. Ugalde and Morris (2010) filter the coherent
Euler solutions by means of a kernel density distribution algorithm
and reduce these filtered solutions by using the fuzzy c-means clus-
tering algorithm.
Except for the Fairhead et al. (1994) and the Li (2003) criteria, all

other solution acceptance criteria are based on a measure of the
tightness of the Euler solutions cluster. Usually, this cluster is also
used to select the best geometry of the magnetic source. In practice,
several geometries are tentatively assumed, and the one providing
the tightest cluster of Euler solutions is selected as the best source
geometry.
Silva et al. (2001) showed that the scattering of the Euler solu-

tions in a practical problem is caused both by the choice of the
wrong structural index and by the presence of noise in the data.
They also pointed out that the criterion for determining the struc-
tural index as the tentative value producing the smallest solution
scattering is theoretically sound, but occasionally fails because
of noise in data. Hence, the widely used Thompson (1982) criterion
for accepting Euler solutions may fail. Silva et al. (2001) also an-
swer an intriguing question of Euler deconvolution initially raised
by Ravat (1996): Why is the average of the horizontal position es-
timates less sensitive to the wrong choice of the structural index
and/or to noise in the data as compared with the vertical position
estimates? Silva et al. (2001) prove that these behaviors follow di-
rectly from the symmetry properties of the estimates. They also help
us understand that the horizontal position estimates through Euler
deconvolution are more robust than the vertical position estimates

because the former are insensitive to the wrong choice of the struc-
tural index and to the data noise. Hence, the acceptance criterion of
Euler solutions, based on the tight cluster of horizontal and vertical
position estimates, may fail mainly because of the larger scattering
of the vertical position estimates.
The robustness of the horizontal position estimates by Euler de-

convolution is confirmed by Silva and Barbosa (2003) who deduce
the analytical estimators of the horizontal and vertical source posi-
tions in Euler deconvolution. Silva and Barbosa (2003) also reveal a
contrasting behavior of these estimators at the borders and at the
neighborhood of the highest absolute values of the anomaly. This
differentiated behavior is due to the bias of the horizontal and ver-
tical coordinates estimates. At the borders of the anomaly, the es-
timates of the horizontal and vertical coordinates are biased toward
the respective horizontal and vertical coordinates of the data-
window center. Conversely, in the neighborhood of the highest ab-
solute values of the anomaly, the estimates of the horizontal coor-
dinates are good and consistent estimates of the correct source
coordinates, defining, in this way, plateau areas. These plateaus
are defined in the maps of the horizontal coordinate estimates
against the central position of the data window being independent
of the assumed structural index and the magnetization direction.
These plateaus are also associated with consistent estimates of
the vertical coordinate. However, the estimates of the vertical coor-
dinate at these plateaus are very close to the vertical coordinate of
the true source if and only if the structural index is correctly
assumed.
In this paper, we present a new method for selecting the best Eu-

ler solutions by using the theoretical basis proposed by Silva and
Barbosa (2003). Our method takes advantage of the contrasting
behavior of the Euler solutions at the borders and at the neighbor-
hood of the highest absolute values of the anomaly. It automatically
delineates the regions of the magnetic data producing the best Euler
solutions, each one associated with an anomalous source. Each re-
gion will be an area located at the neighborhood of the highest ab-
solute values of the anomaly where the consistent Euler solutions
are produced by Euler deconvolution. These regions are delineated
by mapping the plateaus, pointed out by Silva and Barbosa (2003),
in the maps of the horizontal coordinate estimates against the central
position of the data window. If the sources are horizontally well
separated, then these plateaus are also horizontally well separated
from each other and thus their horizontal positions can be easily
recognized through a cluster analysis. Each subset of horizontal co-
ordinates defining a plateau (and consequently the horizontal posi-
tion of an anomalous source) is used to pick out the best estimates of
the horizontal coordinates by assuming any structural index in Euler
deconvolution. Next, for each anomalous source, our approach cal-
culates the means of the best estimates of the horizontal source po-
sitions over the associated plateau. For each plateau that is
associated with an anomalous source, our method determines the
structural index via the Barbosa et al. (1999) method. By using this
structural index determined for each plateau, our approach picks out
the best estimates of the vertical coordinates over the corresponding
plateau. Finally, the mean of the best estimates of the vertical source
positions are calculated for each anomalous source.
For each magnetic anomaly, our method provides a single source

position. Moreover, the method can estimate the positions of multi-
ple sources, whether they are characterized by the same structural
index or not. These assertions are confirmed by tests with synthetic
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data. A test on a total-field anomaly collected over mafic-ultramafic
alkaline bodies located in the Goiás Alkaline Province, central
Brazil, leads to the interpretation of two sphere-like sources whose
centers are located at depths of 3 and 3.2 km.

METHODOLOGY

Let’s assume a magnetic point (or line) source at the coordinates
(xo; yo; zo) referred to a right-hand Cartesian coordinate system
with the z-axis pointing downward. The observed total-field
anomaly h ≡ hðx; y; zÞ at the coordinates ðx; y; zÞ produced by this
simple magnetic source obeys Euler’s 3D equation (Reid et al.,
1990). By considering a discrete set of N observations of the
total-field anomaly, the classical formulation of Euler deconvolu-
tion can be written as a linear system of equations given by

xo
∂hi
∂x

þ yo
∂hi
∂y

þ zo
∂hi
∂z

þ ηb¼ xi
∂hi
∂x

þ yi
∂hi
∂y

þ zi
∂hi
∂z

þ ηhi;

i¼ 1; : : : ;N; (1)

where hi ≡ hðxi; yi; ziÞ is the ith observation of the total-field
anomaly at the coordinates ðxi; yi; ziÞ, b is a base level (i.e., a con-
stant background value) and η is the structural index related to the
nature or geometry of the source.
For a given structural index, the Euler deconvolution consists in

solving the system of equations 1, in the least-squares sense, for the
unknown parameters xo; yo; zo, and b. This procedure leads to a
single set of the estimates x̂o, ŷo, ẑo, and b̂ that would be expected
to locate an isolated magnetic source and to estimate the base level.
In interpreting noisy and interfering total-field anomalies from a
complex geologic setting with multiple sources, the Euler deconvo-
lution uses gridded observations and produces many sets of esti-
mates x̂o, ŷo, ẑo, and b̂, each one obtained by using the
observations inside a small data window formed by a grid of NX ×
NY data points (Figure 1a). Hence, for a given data window the
Euler deconvolution obtains the estimates x̂o, ŷo, ẑo, and b̂ and
the next estimates are obtained by shifting the data window with
a shift size of one data spacing. This procedure is repeated over
the whole data set in a moving-data window scheme. As pointed
out by Barbosa and Silva (2011), this procedure has the disadvan-
tage of computing a large number of inconsistent estimated solu-
tions making it difficult to decide on the correct locations of the
geologic sources.
By assuming a null base level in equation 1, Silva and Barbosa

(2003) deduce the analytical estimators x̂o; ŷo; and ẑo (see equa-
tions 8–10 in Silva and Barbosa, 2003). The most striking feature
of these analytical estimators for parameters xo; yo, and zo is their
bias and symmetry properties as a function of the moving-data win-
dow position. Silva and Barbosa (2003) proved that, at the anomaly
borders, the estimates x̂o; ŷo, and ẑo are biased toward the arithmetic
averages of the respective x-, y-, and z-coordinates of the center of
the moving-data window (Figure 1b). This happens regardless of
the assumed structural indices and regardless of the magnetization
inclination and declination. Conversely, in the neighborhood of the
highest absolute values of the anomaly the estimates x̂o; ŷo, and ẑo
are approximately constant values defining a plateau (Figure 1b).
Specifically, at this plateau, the estimates x̂o and ŷo are very close
to the respective x- and y-coordinates of the true source, indepen-
dently of the assumed structural index and independently of the

source magnetization vector. However, the estimates ẑo, on this
plateau, are very close to the z-coordinate of the true source only
if the assumed structural index is correct; otherwise, the estimates ẑo
will underestimate (or overestimate) the z-coordinate of the true
source if the assumed structural index is smaller (or greater) than
the correct one.

Figure 1. Two-dimensional sketch of the method. (a) The total-field
anomaly (dots), where hi ≡ hðxiÞ is the ith observation at the co-
ordinate ðxiÞ. The sketch of the first and kth moving data windows
whose centers are x3 and xk, respectively. (b) Estimates x̂o (dots)
against the x-coordinate of the center of the moving data window.
The estimates x̂o (black dots) define inclined planes (dashed black
lines) at the anomaly borders. The estimates x̂o (gray dots) define a
plateau (stippled gray line) at the neighborhood of the highest ab-
solute values of the anomaly, close to the true position xo of the
source. (c) Angular coefficients estimates against the x-coordinate
of the center of the moving window. The place where the angular
coefficients estimates are closest to zero identify automatically a
plateau of x̂o in (b).
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In this paper, we take advantage of this behavior of the Euler
solutions in producing plateaus to compute automatically the best
estimates of the horizontal ( ~xo; ~yo) and vertical (~zo) source posi-
tions. First, our method selects the best horizontal coordinate esti-
mates ( ~xo and ~yo) in Euler deconvolution for each source by
assuming any structural index. Second, it determines the structural
index (η) of each source as will be explained below. Finally, the
method selects the best depth estimate (~zo) of each source by using
the estimated structural index.

Selecting the best horizontal coordinate estimates
in Euler deconvolution

The practical procedure to determine the best estimates ~xo and ~yo
is as follows. First, we apply the Euler deconvolution with any
structural index. For each position of the moving data window,
we produce the plots of x̂o and ŷo against the x- and y-coordinates
of the center of the moving-data window (Figure 1b). After produc-
ing these two plots of x̂o and ŷo, we automatically identify the pla-
teaus (see next paragraph) and extract the subsets of the x̂o and ŷo
estimates that fall within the respective plateaus. Then, for these
extracted subsets of the x̂o and ŷo estimates, we compute the sample
means ~xo and ~yo, which will be defined as the best estimates of the
horizontal source positions.

To automatically identify the plateaus in the plots of x̂o and ŷo,
we take advantage of the bias and symmetry properties pointed out
by Silva and Barbosa (2003). Graphically, this means that, at the
anomaly borders, the estimates x̂o and ŷo form inclined planes
(Figure 1b). Hence, a crucial point in our method lies in the ability
to distinguish plateaus from inclined planes in the plots of x̂o and ŷo
against the central position of the data window (Figure 1b). Here, to
differentiate the plateaus from these inclined planes on the estimates
x̂o and ŷo, our method fits, in the least-squares sense, first-degree
polynomials to these estimates. This fitting will be accomplished
through a moving-window scheme spanning the maps of the esti-
mates of x̂o and ŷo on the plane of the x-coordinates against the
y-coordinates of the center of the moving window. This scheme
consists in fitting a first-degree polynomial to the subset of the es-
timates x̂o and ŷo defining each moving window (Figure 1b). Next,
the estimated angular coefficients of these fitted polynomials are
plotted against the center of the moving window (Figure 1c). Then,
the places where the corresponding angular coefficients estimates
are closest to zero identify the plateaus in the plots of x̂o and ŷo
automatically. The mathematical and algorithmic details are given
in Appendix A.

Selecting the structural index

After identifying the plateaus in the plots of x̂o and ŷo and
obtaining the best estimates of the horizontal source positions
( ~xo and ~yo), we proceed to determine the best structural index η,
and for this purpose we follow the approach proposed by Barbosa
et al. (1999). Based on Euler’s equation, Barbosa et al. (1999) show
that the estimates of the base level (b̂), as a function of the center of
the moving-data window, are correlated with the observed total-
field anomaly (h). If the tentative structural index is greater (or
smaller) than the correct one, this correlation is positive (or nega-
tive). A minimum correlation between the estimates b̂ and h is
favored when the correct structural index is assumed.
Here, the practical procedure adopted to determine the best struc-

tural index is as follows. We first obtain estimates b̂ by using the
classical Euler deconvolution for some tentative structural indices.
Next, we select the subsets of the total-field anomaly and estimates
b̂ that approximately fall within the plateaus identified in the plots
of x̂o and ŷo. Finally, for each tentative structural index, we compute
the correlation coefficient between these subsets of the total-field
anomaly and of the estimates b̂. The tentative structural index that
produces the minimum correlation coefficient (in modulus) is the
best estimate of the structural index (η).
In all applications in this paper, we assigned the following struc-

tural indices η: 3, 2, 1, and 0.1 (a value close to zero).

Selecting the best vertical coordinate estimates
in Euler deconvolution

According to Silva and Barbosa (2003), at the plateaus in the
plots of ẑo, the estimates ẑo are very close to the z-coordinate of
the true source only if the assumed structural index is correct. After
identifying the plateaus in the plots of estimates x̂o and ŷo (Figure 2a
and 2b) and determining the best estimate of the structural index (η),
we proceed to selecting the best estimates of zo from the set of es-
timates obtained through Euler deconvolution using the best esti-
mate of the structural index (η). For this, our practical procedure
begins by producing a plot of all these estimates ẑo against the

Figure 2. Schematic representation of the positions (subsets of the
x- and y-coordinates) of plateau in the maps of (a) x̂o and (b) ŷo.
Superposition (c) and intersection (d) of the pairs of plateaus of x̂o
and of ŷo shown in (a) and (b), respectively. The best coordinate
estimates ~xo, ~yo and ~zo in 3D Euler deconvolution are the sample
means of the subsets of the estimates x̂o, ŷo and ẑo over the respec-
tive plateaus in (a), (b), and (d), respectively.
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x- and y-coordinates of the center of the moving data window used
in Euler deconvolution (not shown). Next, we determine the inter-
section of the sets of estimates x̂o and of ŷo defining plateaus
(Figure 2c and 2d) and extract the subset of the estimates ẑo that
fall within this intersection. Finally, we compute the sample mean
~zo of the extracted subset of the estimates ẑo. This sample mean ~zo is
taken as the best depth estimate of the source.

Geologic setting with multiple sources

The method described so far works well when applied to an iso-
lated anomaly produced by a single source. However, in real world
scenarios where the observed total-field anomaly is produced by M
sources (Figure 3a), the above-described method is not sufficient to
identify all plateaus. In this case, we need to identify and individu-
alize each of the M plateaus occurring in the plots of x̂o and ŷo
(Figure 3b) to select the best horizontal coordinate estimates of each
source. To automatically map each plateau we first fit, in the least-
squares sense, first-degree polynomials to estimates x̂o and ŷo using
a moving-window scheme, and the places where the corresponding
angular-coefficients estimates are closest to zero identify the pla-
teaus of x̂o and ŷo (black ribbons in Figure 3b) exactly as done
in the case of a single source. Then, we discriminate among the
subsets of x- and y-coordinates related to each plateau using a clus-
ter analysis algorithm (see Appendix B). After discriminating each
plateau in the plots of x̂o and ŷo, the above-explained approaches to
determine the structural index and to select the best vertical coor-
dinate estimates in Euler deconvolution are applied to each plateau
as in the case of a single source.

SYNTHETIC DATA APPLICATION

We applied our method to a synthetic noise-corrupted total-field
anomaly (not shown) produced by a spherical source with a radius
of 1 km and by a semi-infinite horizontal cylinder with a radius of
0.2 km. The anomaly was corrupted with pseudorandom zero-mean
Gaussian noise with a standard deviation of 2 nT. The two simulated
sources are emplaced in a nonmagnetic medium having induced
magnetization with magnetization inclination of 90° and declination
of 0°. The spherical source center is located at xo ¼ 20 km,
yo ¼ 24 km, and zo ¼ 2 km with magnetization intensity of
1 A∕m. The horizontal cylinder has a uniform magnetization of
8 A∕m, and its center is located at xo ¼ 20 km and zo ¼ 2 km

whereas yo ranges from 64 km to infinite in the y-direction. Below,
we illustrate the steps of our methodology.
The first step is to estimate the horizontal source positions. To do

this, we apply the Euler deconvolution using a 15 × 15moving data
window and assuming an arbitrary structural index. Figure 4a and
4b shows the estimates x̂o and ŷo against the x- and y-coordinates of
the center of the moving data window. The most striking features in
these maps are the overall trend of an inclined plane, and the
presence of two local plateaus. Both plateaus on the map of x̂o
(Figure 4a) occur at x̂o ¼ 20 km, which recover the true positions
along x-direction. On the map of ŷo (Figure 4b), the two plateaus
occur at ŷo ¼ 24 km and ŷo ¼ 64 km, which coincide with the
y-coordinates of the true simulated sources (the center of the sphere
and the extremity of the semi-infinite horizontal cylinder, respec-
tively). Notice that the extremity of the semi-infinite horizontal
cylinder behaves like a 3D source.

The second step consists in identifying automatically the plateaus
in the map of estimates x̂o and ŷo. After estimating x̂o and ŷo, we fit
in the least-squares sense a first-degree polynomial to these esti-
mates by using a moving window of 15 × 15 grid points (see
Appendix A). Figure 4c and 4d shows the estimated x- and
y-coefficients of the polynomial (ĉx and ĉy) against the x- and
y-coordinates of the moving-window center. In both maps of ĉx
(Figure 4c) and ĉy (Figure 4d) against the x- and y-coordinates
of the moving-window center, we highlighted the areas asso-
ciated with estimated angular coefficients closest to zero values
(white areas in Figure 4c and 4d), which locate the plateaus of
x̂o (Figure 4a) and ŷo (Figure 4b), respectively. To automatically
identify the subsets of the x- and y-coordinates related to each pla-
teau on the maps of x̂o and ŷo, we employed a clustering algorithm
(see Appendix B). This procedure discriminates between two sub-
sets of the x- and y-coordinates (not shown) which define the posi-
tions of the two plateaus in the maps of x̂o and ŷo.
In the third step of our method, we obtain the best estimates of the

horizontal positions of each source. After identifying the plateaus in

Figure 3. Two-dimensional schematic representation of (a) the to-
tal-field anomaly (dots) produced by six sources (gray polygons in
the lower panel) whose locations are xoj , j ¼ 1; : : : ; 6. (b) Esti-
mates x̂o (dots) against the x-coordinate of the center of the
moving-data window. The estimates of x̂o define inclined planes
(black dots) and six plateaus (gray dots), each one associated with
estimates x̂o nearly constant and close to the x-coordinates of a true
source (xoj , j ¼ 1; : : : ; 6). The black ribbons pinpoint the subsets
of x-coordinates which locate the plateaus.
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the plots of ĉx and ĉy, we extract the subsets of the x̂o and ŷo
estimates that fall within the respective plateaus. Then, we compute
the sample means ~xo and ~yo of the respective subsets of the x̂o and
ŷo estimates that will be taken as the best estimate of the source
position along the x- and y-directions. Because there are two pla-
teaus on the maps of x̂o and ŷo, there will be two sample means of

the estimates x̂o and ŷo calculated over each plateau which are the
best estimates of the horizontal source positions ( ~xo and ~yo). By
comparing the two sample means ~xo and ~yo with the respective true
values (Table 1), we certify the good performance of our method in
recovering the best estimates of the horizontal source positions in
Euler deconvolution.

Figure 4. Synthetic data test produced by sources with different geometries. The westernmost and easternmost sources are, respectively, a
sphere and a semi-infinite horizontal cylinder, both with 2-km-deep centers. Estimates (a) x̂o and (b) ŷo against the x- and y-coordinates of the
center of the moving data window in Euler deconvolution. Estimates of angular coefficients (c) ĉkx and (d) ĉky against the x- and y-coordinates of
the center of a kth moving window which spans the maps of the estimates of x̂o and ŷo, respectively. The white areas in (c and d) highlight the
places where, respectively, ĉkx and ĉky are closest to zero. Estimates ẑo against the x- and y-coordinates of the center of the moving data window
in Euler deconvolution by assuming (e) η ¼ 3 and (f) η ¼ 2. The white areas in (e and f) highlight the estimates ẑo that will be selected to
compute the best depth estimates of the sphere and semi-infinite horizontal cylinder, respectively.
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The fourth step consists in determining the structural index of
each source. Thus, we select the subsets (areas) of the total-field
anomaly and estimates b̂ that approximately fall within the plateaus
identified in the maps of x̂o and ŷo. Finally, for each source, we take
as the best estimate of the structural index (η) the one that produces
the minimum correlation coefficient between the corresponding
subset of the total-field anomaly and the estimated base level.
The tentative values for the structural indices that produce the small-
est correlations, in absolute values, are: (1) η ¼ 3 in the case of the
westernmost source, consistent with a dipole source (Figure 4) and
(2) η ¼ 2 in the case of the easternmost source (Figure 4). The
simulated easternmost source is a semi-infinite horizontal cylinder;
thus, it is not a line of dipoles, that is, the structural index is not
η ¼ 2. For most of the area, however, just from inspection of the
Euler solutions (Figure 4), we can easily infer that this easternmost
source behaves like a 2D source (infinite horizontal cylinder with
η ¼ 2). Thus, the estimated index η ¼ 2 (line of dipoles) will be
accepted as the correct one because it yields a minimum correlation.
In the fifth step, we obtain the best estimates of the vertical po-

sitions of each source. To this end, we apply the Euler deconvolu-
tion assuming the estimated indices as the true ones to estimate the
coordinate ẑo for each source. The maps of the estimates ẑo against
the x- and y-coordinates of the center of the moving data window by
assuming η ¼ 3 and η ¼ 2 are shown in Figure 4e and 4f, respec-
tively. To estimate the best ẑo for each source, we pick out those
estimates ẑo (Figure 4e and 4f) over the intersections of the pairs
of mapped plateaus of x̂o and of ŷo. The white areas (Figure 4e and
4f) highlight the estimates ẑo lying at the intersections (not shown)
of the pairs of mapped plateaus of x̂o and of ŷo. The two subsets of
estimates ẑo (in white, Figure 4e and 4f) were used to compute the
two sample means ~zo, each one associated with one of the simulated
magnetic sources (sphere and semi-infinite horizontal cylinder, re-
spectively). These sample means of ẑo are: (1) ~zo ¼ 2.07 km in the
case of the sphere (the westernmost source in Figure 4e) and (2)
~zo ¼ 2.05 km in the case of the semi-infinite horizontal cylinder
(the easternmost source in Figure 4f). These sample means ~zo
are taken as the best depth estimates of these sources, being con-
sistent with the true depths of the simulated sources (Table 1).

INTERFERING SIGNALS

In this section, we investigate the sensitivity of our method when
used to interpret interfering anomalies produced by sources that are
horizontally separated from each other by short distances. We ana-
lyze the ability of our method to correctly recover the horizontal and
vertical source positions in the case of weak-, mid-, and strong-in-
terfering signals. To conduct this analysis, we use the same simu-
lated sources described in the previous section. We kept the original
variables describing the sphere and the semi-infinite horizontal cyl-
inder, except for their horizontal coordinate yo (east–west source
positions), which will be modified to reduce the distance between
the sources. The sensitivity is studied as a function of separation-
to-depth ratio (d∕zo), where d is the horizontal distance between the
sources, measured along the y-direction (east-west direction). To do
this, d is gradually reduced, giving rise to total-field anomalies rang-
ing from weakly to strongly interfering.
We computed six noise-corrupted total-field anomalies (Figure 5).

The anomalies were corrupted with pseudorandom zero-mean
Gaussian noise with a standard deviation of 2 nT. In the first
test, the d∕zo ratio is equal to 10 with the sphere and semi-infinite

horizontal cylinder located at yo ¼ 34 km and yo ¼ 54 km, respec-
tively. This test simulates weakly interfering anomalies (Figure 5a).
In the next tests, the sources are gradually placed closer to each
other. To do this, the d∕zo ratio is decreased by subtracting two units
from its current value until d∕zo ¼ 1. In the last test, strongly in-
terfering anomalies (Figure 5f) are produced by the sphere and the
semi-infinite horizontal cylinder which are located at yo ¼ 43 km

and yo ¼ 45 km, respectively.
We apply the Euler deconvolution to each magnetic data set

shown in Figure 5. At this stage, aiming at estimating just the hori-
zontal source positions, we use a 15 × 15 moving data window and
assume any structural index. By applying our method that automati-
cally identifies the plateaus on the maps of x̂o and ŷo and determines
the best estimates of the horizontal source positions, we note that
the estimates ~xo and ~yo are good in the case of weak- and midin-
terfering anomalies (d∕zo varying from 10 to 2, in Figure 5a–5e);
however, it fails in the case of strong-interfering anomalies
(d∕zo ¼ 1, in Figure 5f) as shown in Table 2.
To obtain the best depth estimates, we first need to determine the

structural index for each source. To do this, for each source, we
compute the correlation coefficients between the total-field anomaly
and the estimate base level by assigning several tentative values to
the structural index following the same procedure adopted in the
previous section. By assuming different structural indices, we
compute the correlation coefficients computed over the anomalies
located at the westernmost (Figure 6a) and easternmost (Figure 6b)
portions of the area. In the case of weak- and midinterfering anoma-
lies (d∕zo varying from 10 to 2) the smallest correlation coefficients
over the westernmost and easternmost anomalies occur for η ¼ 3

(Figure 6a) and η ¼ 2 (Figure 6b), respectively. These results show
excellent agreement with the true simulated sources: the western-
most source is a sphere (or a dipole with η ¼ 3) and the easternmost
one is a semi-infinite horizontal cylinder (or a source that behaves
like a line of dipoles with η ¼ 2 for most of the area). However, the
structural indices are wrongly determined in the case of strong in-
terfering anomalies where d∕zo ¼ 1. In this case where d∕zo ¼ 1,
the smallest correlation coefficients over the westernmost and east-
ernmost anomalies occur for η ¼ 2 (Figure 6a and 6b).
After determining these two structural indices, we apply the Euler

deconvolution assuming the determined structural indices to obtain
the best depth estimates. Table 2 shows the six depth estimates ~zo,
each one obtained for a fixed d∕zo ratio. A noticeable aspect of
these depth estimates is that they show close agreement with the
true ones (zo ¼ 2 km) in the case of weak- and mid-interfering
anomalies (Figure 5a–5e). However, in the case of strong-interfering
anomalies (Figure 5f) where d∕zo ¼ 1, the structural indices are

Table 1. Horizontal and vertical coordinates of true spherical
and cylindrical sources (xo, yo, zo) and the best estimates of
the horizontal and vertical coordinates ( ~xo, ~yo, ~zo). The
coordinate yo of the cylinder refers to its extremity.

Source
xo
(km)

yo
(km)

zo
(km)

~xo
(km)

~yo
(km)

~zo
(km)

Sphere (η ¼ 3) 20 24 2.0 20.00 24.01 2.05

Cylinder (η ¼ 2) 20 64 2.0 19.99 64.01 1.99
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wrongly determined and thus the best depth estimates over the west-
ernmost and easternmost sources are wrongly estimated.
Additional synthetic examples are illustrated in the supplemen-

tary material of Melo et al. (2013).

REAL DATA APPLICATION

Figure 7 shows the aeromagnetic total-field anomaly over mafic-
ultramafic alkaline bodies, in central Brazil (Dutra and Marangoni,

2009). The flight height was 150 m above the ground surface. The
strong magnetic anomalies at the southwestern and northeastern
quadrants of the study area have been identified by Brasil
(1974), and named Morro do Engenho and A2 anomalies, respec-
tively. The Morro do Engenho Complex anomaly is produced by an
alkaline outcropping body intruded in sediments. This plutonic
body presents concentric layered structures in which the inner layer
is composed of dunites, the intermediate layer consists of peridotites
and pyroxenites and the outer layer is made up of alkaline gabbro

Figure 5. Analysis of the sensitivity to interpret interfering anomalies as a function of separation-to-depth ratio (d∕zo). Noise-corrupted total-
field anomalies produced by a sphere and a semi-infinite horizontal cylinder located, respectively, at the center and at the easternmost limit of
the data. The centers of these sources are at the same depth of zo ¼ 2 km and at the same horizontal coordinate xo ¼ 20 km. The variation of
the separation distance d between the sources along the y-direction (east–west direction) is expressed in terms of variations in d∕zo spanning
the values (a) 10, (b) 8, (c) 6, (d) 4, (e) 2, and (f) 1.

Table 2. Analysis of the sensitivity in interpreting interfering anomalies as a function of separation-to-depth ratio (d∕zo), where d
is the horizontal separation distance between the sources that is measured along the y-direction (east–west direction). Horizontal
and vertical coordinates of true spherical and cylindrical sources (xo, yo, zo) and the best estimates of the horizontal and vertical
coordinates ( ~xo, ~yo, ~zo).

Source d∕zo xo (km) yo (km) zo (km) ~xo (km) ~yo (km) ~zo (km)

Sphere 10 20 34 2.0 20.02 33.99 2.07

Sphere 8 20 36 2.0 19.99 36.00 2.05

Sphere 6 20 38 2.0 20.00 37.99 2.02

Sphere 4 20 40 2.0 20.00 39.96 2.04

Sphere 2 20 42 2.0 19.98 41.89 2.06

Sphere 1 20 43 2.0 20.01 42.79 2.15

Cylinder 10 20 54 2.0 19.99 53.98 2.01

Cylinder 8 20 52 2.0 19.99 51.92 2.02

Cylinder 6 20 50 2.0 19.99 49.89 1.99

Cylinder 4 20 48 2.0 19.99 47.94 2.03

Cylinder 2 20 46 2.0 20.00 46.05 2.01

Cylinder 1 20 45 2.0 19.99 43.55 1.40
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and syenite (Radaelli, 2000). The northeastern anomaly (A2) is a
possible buried alkaline body being overlaid by the Quaternary
sediments (Brasil, 1974).
To obtain the best estimates of the horizontal source positions of

these alkaline bodies, we apply the Euler deconvolution using a
15 × 15 moving data window spanning the area limited by x ∈
[3 km, 38 km] and y ∈ [3 km, 42 km]. By assuming any structural
index, we estimate x̂o (Figure 8a) and ŷo (Figure 8b) against the
x- and y-coordinates of the center of the moving data window.
Two plateaus are easily detected by visual inspection of the esti-
mated maps of x̂o and ŷo (Figure 8a and 8b).
After estimating the maps of x̂o and ŷo and performing a visual

analysis of the plateaus in these maps, we fit first-degree polyno-
mials to x̂o and ŷo by using a moving data window of 3 × 3 grid
points which spans the area limited by x ∈
[11.4 km, 29.5 km] and y ∈ [11.1 km,
33.5 km]. Figure 8c and 8d shows the estimated
angular coefficients ĉx and ĉy, against the x- and
y-coordinates of the moving-window center. We
can easily identify areas (in white) where ĉx
(Figure 8c) and ĉy (Figure 8d) are closest to zero.
These white areas in Figure 8c and 8d define the
two subsets of the x- and y-coordinates which
will be used to define the positions of the two
plateaus on the maps of x̂o and ŷo. After locating
these plateaus, we compute the two sample
means ~xo and ~yo of the two subsets of the x̂o
and ŷo estimates lying over each plateau. These
sample means are the best estimates of the hori-
zontal source positions of the Morro do Engenho
and A2 bodies (Table 3). After estimating the
best horizontal source positions, we estimate
the structural index of each body following the
same procedure adopted in the previous test.
Both bodies are interpreted as dipoles (spheres)
because the tentative values for the structural in-
dices that produce the smallest correlation coef-
ficients between the total-field anomaly and the
estimated base level computed around the Morro
do Engenho and A2 bodies are equal to 3. Be-
cause the best estimate of the structural index
is the same for both sources, we produce only
one map of the estimates ẑo against the x- and
y-coordinates of the center of the moving data
window (Figure 8e). To estimate the best ~zo we compute, for each
source, the sample averages of the respective estimates ẑo located
over the intersections (not shown) of the pairs of plateaus of x̂o and
of ŷo. As shown in Table 3, Morro do Engenho and A2 bodies are
two sphere-like sources whose centers are located at depths of 3 and
3.2 km, respectively.
Morro do Engenho and A2 bodies are located on the northern part

of Goiás Alkaline Province, which results from mafic-alkaline mag-
matism occurred in Late Cretaceous along a northwest–southeast
lineament (Dutra et al., 2012). This alkaline province has been stud-
ied by several authors, who proposed two hypotheses about the
shape of the igneous intrusions and the mechanisms responsible
for their emplacement. The first hypothesis advocates that the alka-
line bodies are plug-like intrusions that cut the crust by taking ad-
vantage of prior weakness zones (e.g., fractures and faults) where

the mobile material is driven into (Gomes et al., 1990; Danni, 1994).
The second hypothesis advocates that the alkaline bodies are
sphere-like intrusions being consistent with the model of magmatic
chambers instead of plug intrusions (Junqueira-Brod et al., 2005;
Dutra and Marangoni, 2009). Junqueira-Brod et al. (2005) propose
that plutonic bodies were intruded along the contact between the
Precambrian basement and the sedimentary rocks. This unconform-
ity has allowed enough space to accommodate relatively large
amounts of magma, yielding magmatic chambers. On the other
hand, Dutra et al. (2012) suggest that the Morro do Engenho com-
plex have spherical shape whereas the A2 anomaly would have the
shape of a vertical cylinder (plug). Our result agrees with the hy-
pothesis of sphere-like intrusions because the estimated structural
indices for Morro do Engenho and A2 bodies are the same and

Figure 6. Correlation coefficients between the total-field anomaly and the estimated
base level for different values of the tentative structural index versus d∕zo. These
coefficients are computed over the anomalies located at the (a) westernmost and (b) east-
ernmost portions of the area.

Figure 7. Alkaline bodies, Brazil: Total-field anomaly. Morro
do Engenho and A2 anomalies are pinpointed as ME and A2,
respectively.

A single Euler solution per anomaly J95

D
ow

nl
oa

de
d 

10
/1

0/
13

 to
 2

00
.2

0.
18

7.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



equal to the index of a dipole (sphere). However, the hypothesis of
plug-like intrusions cannot be discarded. If the bodies have the
thickness comparable to the width, like an equilateral cylinder,
the Euler deconvolution cannot distinguish the equilateral cylinder
from a sphere.

CONCLUSIONS

We have presented a new method for selecting the best source
location estimates in Euler deconvolution. Our approach has dras-
tically reduced the number of the selected Euler solutions to a single

Figure 8. Alkaline bodies, Brazil: Estimates (a) x̂o and (b) ŷo against the x- and y-coordinates of the center of the moving data window in Euler
deconvolution. Estimates of the angular coefficients (c) ĉkx and (d) ĉky against the x- and y-coordinates of the center of a kth moving window
which spans the maps of the estimates of x̂o and ŷo, respectively. The white areas in (c and d) highlight the places where, respectively, ĉkx and ĉky
are closest to zero. (e) Estimates ẑo against the x- and y-coordinates of the center of the moving data window in Euler deconvolution by
assuming η ¼ 3. The white areas in (e) highlight the estimates ẑo that will be selected to compute the best depth estimates of the alkaline
bodies. ME and A2 pinpoint the alkaline positions of Morro do Engenho and A2, respectively.

Table 3. Real data application. Best estimates of the
horizontal and vertical coordinates ( ~xo, ~yo, ~zo) of two alkaline
sources.

Source ~xo (km) ~yo (km) ~zo (km)

Morro do Engenho (ME) 11.50 15.40 3.20

Anomaly A2 23.83 36.35 2.97
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one per anomaly. This is possible because our method does not se-
lect Euler solutions based on their statistical consistency after a clus-
ter analysis. Rather, in our method, this selection is grounded on the
theoretical analysis of the estimators for the horizontal and vertical
source positions in Euler deconvolution as a function of the x- and
y-coordinates of the observations. Our approach consists in
detecting automatically the regions of the anomaly producing con-
sistent estimates of the source horizontal coordinates. These regions
form plateaus in the horizontal coordinates estimates. We automati-
cally identify these plateaus by fitting a first-degree polynomial
to the horizontal coordinate estimates with a moving-window
operator which spans these estimates. The places where the angu-
lar-coefficients estimates are closest to zero identify automatically
the plateaus of the horizontal coordinate estimates where consistent
estimates of the horizontal source positions are found. In our
method, the best estimates of the horizontal source positions are
the sample means of the estimates that fall within the respective
plateaus. After estimating the structural index for each source,
we apply the Euler deconvolution using the estimated structural in-
dex and assume as the best estimates of the vertical source positions
the sample means of the estimates that fall at the intersections of the
pairs of plateaus associated with each horizontal coordinate esti-
mates. Tests using synthetic and real data showed that our method
is able to correctly estimate the source locations whether the sources
geometries (structural indices) are the same.
The cornerstone of our method’s ability to automatically select

the best estimates of the horizontal source positions is its capacity to
recognize the plateaus in the horizontal coordinate estimates. We
identify the plateaus by fitting a first-degree polynomial to the hori-
zontal coordinate estimates. However, other methodologies could
be employed such as the pattern recognition techniques (e.g., neural
networks, template matching, discriminant analysis, principal com-
ponent analysis, and support vector machine). To determine the best
depth estimate for each source, we need to estimate the structural
index, we stress that other methods besides the proposed one could
also be employed.
The main limitation of our method is its limited performance in

interpreting 2D sources. This occurs because, along the strike of a
2D source, the horizontal coordinate estimates vary and then the
plateaus are not well defined. Moreover, our approach inherits
the same limitations of Euler deconvolution. The first one is its poor
performance in interpreting interfering anomalies produced by
multiple sources that are vertically (or horizontally) separated from
each other by short distances. The second limitation is its modest
performance in interpreting noisy data.
In contrast with other strategies for accepting Euler solutions, our

method does not use statistical and clustering procedures. Hence,
our method is less sensitive to the presence of noise in the
data. Moreover, our method does not require that the anomaly
be reduced to the pole to enhance the highest absolute values of
the anomalies.
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APPENDIX A

THE MATHEMATICAL DETAILS FOR
SELECTING THE BEST HORIZONTAL

COORDINATE ESTIMATES OF
THE SOURCE IN EULER

DECONVOLUTION

The practical procedure to differentiate the plateaus from inclined
planes on the estimates x̂o and ŷo is as follows. First, we set a
regular grid of NX × NY points of a moving window that will
sweep the map of estimates x̂o with a shift of one grid unit. Here,
NX and NY are the numbers of estimates x̂o along the x- and y-
directions, respectively. The total number of points (estimates
x̂o) defining a moving window is N ¼ NX · NY. Then, a subset
of the estimates x̂o, within the kth moving window, is fitted in
the least-squares sense by a first-degree polynomial in both
x- and y-directions, i.e.,

xkoi ¼ cko þ ckxxki þ ckyyki ; i ¼ 1; : : : ; N: (A-1)

This linear relationship can be written in matrix notation as

xko ¼ Akck; (A-2)

where xko is an N-dimensional vector containing the subset
of estimates x̂o within the kth moving window, ck ≡ ðcko; ckx; ckyÞT
is a vector containing the three unknown coefficients of the
first-degree polynomial of the kth moving window, and
Ak is an N × 3 matrix whose columns are N-dimensional
vectors given by: ak1 ≡ ð1; : : : ; 1ÞT , ak2 ≡ ðxk1; : : : ; xki ; : : : ; xkNÞT ,
and ak3 ≡ ðyk1; : : : ; yki ; : : : ; ykNÞT , where xki and yki are the x-
and y-coordinates defining the position of the ith estimate x̂koi .
Next, we obtain estimates ĉko; ĉkx and ĉky as least-squares solution

of equation A-2. We repeat this procedure for each position of a
moving window spanning the estimates x̂o, with a shift of one grid
unit. In practice, we use the same window size that was used in
applying the Euler deconvolution. If the number of Euler solutions
is reduced, we can use a smaller window size than the one used in
Euler deconvolution. The best estimates of x̂o are those related to
the estimated coefficients ĉkx that are closest to zero. These coeffi-
cients are used to map the plateaus of x̂o, where consistent estimates
of the horizontal source positions in Euler deconvolution are very
close to the true ones. Notice that each estimated coefficient ĉkx is
located at the x- and y-coordinates of the kth moving-window
center. These estimates are then used to compute the sample mean
~xo of the estimates x̂o, which is assumed to be the best estimate of
the source position along the x-direction. Mutatis mutandis, this
practical procedure is repeated for the estimates ŷo.
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APPENDIX B

DETAILS FOR DEFINING THE SUBSETS
OF HORIZONTAL COORDINATES OF

EACH PLATEAU

By assuming a set of M laterally adjacent sources, we can auto-
matically map M plateaus in the plots of the estimates ĉx and ĉy
closest to zero (Appendix A). The position of each plateau in these
plots is defined by a subset of x- and y-coordinates that defines a
cluster. Our clustering algorithm identifies those x- and y-coordi-
nates that are closest to each other following a distance criterion.
The algorithm is based in the premise that a circle in the x − y space
with the radius r chosen by the user and centered at any pair (xi; yi)
defines a cluster. For each point (xi; yi), we create a circle with
radius r centered at the point. Then, all the points within the same
circle are classified as belonging to the same cluster. Let us assume
that two points are spatially separated from each other by a distance
of 0.5 m, if the user defines r ¼ 1 m; then, these points will be clas-
sified as belonging to the same cluster because a circle of r ¼ 1 m is
centered at each point.
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